Lignans from Leaves of Rollinia mucosa

Rosa Estrada-Reyes^a, Ana Laura Alvarez C.^b, Carolina López-Rubalcava^c, Luisa Rocha^c, Gerardo Heinze^a, Julia Moreno^a and Mariano Martínez-Vázquez*,^b

- ^a Instituto Nacional de Psiquiatría, Av. México-Xochimilco 101, Tlalpan, México, 14370, México
- b Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Coyoacán, México, 04510, México
- ^c Departamento de Farmacobiología Centro de Investigaciones y Estudios Avanzados IPN
- * Author for correspondence and reprint requests
- Z. Naturforsch. 57c, 29-32 (2002); received August 27/October 2, 2001

Rollinia mucosa, Lignans, (+)-Epimembrine

A new furofuranic lignan named (+)-epimembrine together with known (+)-epieudesmine and (+)-epimagnoline were isolated from leaves of *R. mucosa*. Their structures were determined by spectroscopic data. Palmitone and a mixture of β -sitosterol and stigmasterol were also isolated.

Introduction

As part of our ongoing investigation on biologically active compounds from Mexican medicinal plants (Martínez-Vázquez and García-Argáez, 2001), we have studied the leaves of *Rollinia mucosa* (Jacquin) Baillon (syn. R. *jimenezii* Safford) (Annonaceae). Previous studies of this species reported the isolation of acetogenins, alkaloids (Pettit *et al.*, 1987; Chen *et al.*, 1996; Shi *et al.*, 1996; and Chávez *et al.*, 1998) and the lignans (+)-yangambine, (+)-magnoline, (+)-eudesmin, (+)-epieudesmin and (+)-membrine from mature fruits (Paulo *et al.*, 1991; and Chen *et al.*, 1996). In this paper, we describe the structure elucidation of the furofuranic lignan 1.

Results and Discussion

Leaves of *R. mucosa* were extracted with *n*-hexane and the resulting extract was chromatographed on silica gel eluting with *n*-hexane containing increasing concentrations of ethyl acetate. Compound 1 was isolated from fractions eluted with 8:2 (*n*-hexane: ethyl acetate v/v), while compounds 2 and 3 were isolated from fractions eluted with a solvent ratio of 7:3. Also palmitone (16-hebtriacontanone) (Hayashi and Komae, 1971) and a mixture of β -sitosterol and stigmasterol were isolated. The lignans isolated were (+)-epieudesmine (2) (Pelter *et al.*, 1976) and (+)-epimagnolin (3) (Miyazawa *et al.*, 1994a, b).

 $\begin{array}{llll} \mbox{(+)-epimembrine (1)} & R_1 = H & R_2 = H \\ \mbox{(+)-epigmagnolin A (3)} & R_1 = OMe & R_2 = OMe \\ \end{array}$

(+)-membrin (**4**)

The high-resolution mass spectrum of compound $\mathbf{1}$ showed its [M]⁺ at m/z 356.1642 for a $C_{21}H_{24}O_5$ formula. The peaks at m/z 165 and 151 were attributable to cleavage of fragments containing a veratryl group and the peaks at m/z 135 and 121 were also attributable to cleavage of a p-methoxyphenyl group (Pelter $et\ al.$, 1976). The presence of these two aryl groups in $\mathbf{1}$ was confirmed by its NMR spectral data (Tables I and II).

Compound **1** had a basal 2,6-diaryl-3, 7-dioxabicyclo [3,3,0]-octane skeleton as shown by its 1 H NMR spectrum where the eight aliphatic protons are present at δ 2.91, 3.32, 3.85, 4.13, 4.46 and 4.87 (Miyazawa *et al.*, 1992).

Therefore the gross structure of 1 corresponds to that of membrine (4). However the notorious variance in their NMR data (Tables I and II) indicates that the difference between them should correspond to the relative orientation of the aryl groups.

From a comparison of the chemical shifts of the eight aliphatic protons of **1** with those of (+)-epieudesmine (**2**) (Pelter *et al.*, 1976) and (+)-epimagnolin A (**3**) (Miyazawa *et al.*, 1994b), the stereochemistries of the two aromatic rings were proposed as of the axial-equatorial type. The ¹³C NMR spectral data of **1** confirmed the stereo-

chemistries of the two aromatic rings, because six aliphatic carbon signals were almost identical to those of 2 and 3 (Table II).

Furthermore, the carbon signals assigned to the veratryl group were consistent with those of phyllygenin and (+)-epimagnolin A (axial-veratryl type). A NOESY experiment of 1 confirms the relative stereochemistry of the protons at positions 2 and 6.

Therefore, the structure of **1** named (+)-epimembrine is assigned as *rel* (2*R*, 6*S*)-2-(3,4-dimethoxyphenyl)-6-(4-methoxyphenyl)-3,7-dioxabicyclo [3,3,0] octane.

Experimental

Plant material

Leaves of *R. mucosa* were collected from plants growing in the surroundings of Ocosingo Chiapas, México. A voucher specimen was deposited in the herbarium of Escuela de Biología de la UNI-CACH. (Voucher: A. R. González-Esquinca) Dried and ground leaves (1428 g) were extracted with hexane, EtOAc and MeOH successively (5 l × 3 times, each) at room temperature during 48 h. The hexanic extract (20 g, residue dry weight) was absorbed on 2 g of silica gel and then chromato-

Table I. ¹H NMR spectral data of compounds **1–4**.

H	1	2	3	4
1	3.32 m	3.30 m	3.35 m	3.11 m
2	4.87 d (5)	4.85 d (5.5)	4.87 d (5.5)	4.76 dd (10.2, 7)
4ax	4.13 d (9.5)	4.13 d (10)	4.16 d (9.5)	4.20 m
4eq	3.85 m	3.85 m	3.87 m	3.84 m
5	2.91 m	2.90 m	2.92 m	3.11 m
6	4.46 d (7.2)	4.45 d (7)	4.44 d (7.2)	4.76 dd (10.2, 7)
8ax	3.32 m	3.30 m	3.35 m	3.84 m
8eq	3.85 m	3.35 m	3.87 m	4.20 m
Ar	6.88 m (5H) 7.29 m (2H)	6.94 m 6.86 m	2' 6.94 s 5' 6.84 d (8)	6.82-6.92 m (5H) 7.26-7.30 m (2H)
OMe	3.80 s 3.88 s 3.90 s	3.89 3.90 3.92 3.93	3.84 s 3.87 s 3.87 s 3.88 s 3.91 s	3.81 s 3.88 s 3.90 s

Table II. ¹³C NMR spectral data of lignans 1-4.

Table II.	CIVILL	spectrar da	ta or ngnai	15 1—7.
С	1	2	3	4
1	50.2	50.1	49.9	54.1
2	82.0	81.9	81.8	85.6
4	71.0	70.9	70.8	71.8
5	54.5	54.4	54.4	54.2
6	87.5	87.5	87.6	85.8
8	69.7	69.6	69.6	71.5
1'	131.0	130.8	130.7	133.1
2'	109.0	109.0	108.8	109.2
3'	148.8	148.5	148.7	148.6
4′	148.8	148.6	147.8	149.2
5'	111.1	110.9	110.9	111.0
6′	117.7	117.5	117.5	118.2
1"	133.2	133.5	136.7	133.6
2"	113.5	108.8	102.7	113.0
3"	127.3	147.8	153.2	127.3
4"	159.2	149.0	137.2	159.2
5"	127.3	110.9	153.2	127.3
6"	113.5	118.3	102.7	113.0
OMe	55.2 55.9 56.0	55.8	55.7 55.7 55.9 55.9 60.5	55.3 55.4 56.0

graphed on a column packed with 60 g of silica gel 60 (Merck). Elution with gradients of hexane and ethyl acetate afforded palmitone, (96 mg, 100% n-hexane), a mixture of β -sitosterol and stigmasterol (65 mg, 8:2) and the furofuranic lignans 1 (10 mg, 8:2), 2 (5 mg, 7:3) and 3 (2 mg, 7:3).

The identification of the known compounds was achieved by comparison of their physical and spectroscopic data with those published in the literature.

(+)-*Epimembrine* (**1**)

White crystal mp 128–130 °C. HRMS: m/z: 356.1642 ([M]⁺, calcd for $C_{21}H_{24}O_5$: 356.1624). MS m/z (rel int.) 356 ([M]⁺) (100), 325 (10), 189 (22), 177 (28), 165 (33), 147 (29), 135 (68), 121 (36). [α]²⁵ + 134.6° (CHCl₃; c 1.2). IR ν max cm⁻¹: 1591, 1515, 1464, 1417, 1375, 1071 and 1031. ¹H and ¹³C NMR see Tables I and II.

Acknowledgements

We are indebted to Héctor Ríos, Rocio Patiño and Javier Pérez for technical assistance. Partial financial support from CONACYT (34992-N) is acknowledged.

- Chavez A., Acevedo A. L. and Mata R. (1998), Jimenezin, a novel Annonaceous acetogenin from the seeds of *Rollinia mucosa* containing adjacent tetrahydrofuran-tetrahydropyran ring systems. J. Nat. Prod. **61**, 419–421.
- Chen Y. Y., Fang-Rong C. and Yang-Chang W. (1996), Isoquinoline alkaloids and lignans from *Rollinia mu-cosa*. J. Nat. Prod. **59**, 904–906.
- Hayashi N. and Komae H. (1971), Isolation and identification of palmitone from the leaves of *Lauraceae* plants (*Cinnamomun camphora* Sieb., *Neolitsea serica* Kooidz, *Lindera umbrellata* Thumb.). J. Indian Soc. **48**, 288.
- Martínez-Vázquez M. and García-Argáez A. N. (2001), Phytochemical studies and biological evaluations of some Mexican plants. Recent. Res. Devel. Phytochemistry 5, 59–85.
- Miyazawa M., Kasahara H. and Kameoka H. (1992), Phenolic lignans from flower buds of *Magnolia farge-sii*. Phytochemistry **31**, 3666-3668.
- sii. Phytochemistry **31**, 3666- 3668. Miyazawa M., Ishikawa Y., Kasahara H., Yamanaka H. and Kameoka H. (1994a), An insect growth inhibitory lignan from flower buds of *Magnolia fargesii*. Phytochemistry **35**, 611-613.

- Miyazawa M., Kasahara H. and Kameoka H. (1994b), Microbial oxidation of (+)- epigmagnolin A by *Asper-gillus niger*. Phytochemistry **35**, 1191–1193.
- gillus niger. Phytochemistry **35**, 1191–1193. Paulo M. Q., Kaplan M. A. C., Laprévote O., Rublot F., Hocquemiller R. and Cave A. (1991), Lignans and other non-alkaloid constituents from *Rollinia mucosa*. Fitoterapia **62**, 150–152.
- Pelter A., Ward R. S., Rao E. V. and Sastry K. V. (1976), Revised structures for pluviatilol, methyl pluviatilol and xanthoxylol. Tetrahedron 32, 2783–2788.
- Pettit G. R., Cragg G. M., Polonoki J., Herald D. L., Goswami A., Smith C. R., Moretti C., Schmidt J. M. and Weisleder D. (1987), Isolation and structure of rolliniastatin 1 from the South American tree *Rollinia mucosa*. Can. J. Chem. **65**, 1433–1435.
- Shi G., Xe Q., He K. and McLaughlin J. L. (1996), Rollinecins A and B: two New bioactive annonaceous acetogenins from *Rollinia mucosa*. J. Nat. Prod. **59**, 548–551